Regularized logistic regression with network-based pairwise interaction for biomarker identification in breast cancer
نویسندگان
چکیده
منابع مشابه
Simulation-based Regularized Logistic Regression
In this paper, we develop a simulation-based framework for regularized logistic regression, exploiting two novel results for scale mixtures of normals. By carefully choosing a hierarchical model for the likelihood by one type of mixture, and implementing regularization with another, we obtain new MCMC schemes with varying efficiency depending on the data type (binary v. binomial, say) and the d...
متن کاملSparse logistic regression with Lp penalty for biomarker identification.
In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and ela...
متن کاملNetwork-regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery
Molecular profiling data (e.g., gene expression) has been used for clinical risk prediction and biomarker discovery. However, it is necessary to integrate other prior knowledge like biological pathways or gene interaction networks to improve the predictive ability and biological interpretability of biomarkers. Here, we first introduce a general regularized Logistic Regression (LR) framework wit...
متن کاملComparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings
Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...
متن کاملAligned Graph Classification with Regularized Logistic Regression
Data with intrinsic feature relationships are becoming abundant in many applications including bioinformatics and sensor network analysis. In this paper we consider a classification problem where there is a fixed and known binary relation defined on the features of a set of multivariate random variables. We formalize such a problem as an aligned graph classification problem. By incorporating th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2016
ISSN: 1471-2105
DOI: 10.1186/s12859-016-0951-7